Impact resistance of high-entropy alloys

Zezhou Li, Shiteng Zhao, Senhat Alotaibi, Marc Meyers

Bingfeng Wang, Yong Liu, Central South University

Haoyan Diao, Peter Liaw

→UCSD Materials Science Jacobs and Engineering

University of California, San Diego

Introduction and Objectives

High-entropy alloys (HEAs) are equiatomic, multi-element systems that can crystallize as a single phase, despite containing multiple elements with different crystal structures.

Dynamic testing

Experimental Set-Up: Split Hopkinson Pressure Bar

Adiabatic shear localization is recognized as an important failure mechanism of materials and is produced by the temperature rise in a narrow region, especially formed under high strain-rate deformation.

Microstructure

Ala3CoCrFeNi HEA

Al.3CoCrFeNi HEA has high densities of annealing twins and coarse-grained CrMnFeCoNi HEA obtains average grain size ~10 µm. These two kinds of single phase (fcc) high-entropy alloys were subjected to dynamic loading to examine their dynamic properties, such as dynamic strength and shear localization.

Entangled dislocations and deformation twins (1800 s⁻¹)

Dislocation Generation (10-4 s-1)

Deformed specimens Continuous deformation-twinning hardening near the inserted tip

The combination of multiple strengthening mechanisms such as solid-solution hardening, forest dislocation hardening (Figs. 2(a) and 2(b)), as well as mechanical twinning (Figs. 2(c)) leads to a high work-hardening rate in this alloy. No adiabatic shear band could be observed at a shear strain ~1.1 as depicted in Fig. 2(d). Figs. 2(e) and 2(f) show the formation of profuse mechanical twins near the inserted tip in the hat-shaped specimen, indicating twinning-induced continuous strainhardening, which suppresses shear localization in competition with the thermal softening effect.

Impact resistance of the CrMnFeCoNi high-entropy alloy

Nanocrystalline grains formed inside the shear band

The evolution of plastic deformation, coupled with temperature rise inside the shear band, leads to the formation of a dislocated/twinned microstructure that breaks up the initial coarse-grained grains into small regions.

The combination of excellent strain-hardening ability and modest thermal softening gives rise to remarkable resistance to shear localization, which makes fcc HEAs an excellent candidate for impact resistance applications.

Acknowledgements

We thank the Department of Energy NNSA/SSAP (DE-NA0002080) for partial support and a UC Research Laboratories Grant (09-LR-06-118456-MEYM). Support of Zezhou Li by China-Scholarship-Council (201508020004) was greatly acknowledged.